2013 Bi-State Chapter

Annual Golf Outing

Wednesday, May 8

Same Great Location: The Links at Union Vale
153 North Parliman Road
Union Vale, New York 12540

www.thelinksatunionvale.com

For more information please contact sabbattista@olace.com

Return form (on page 4) with payment by May 6, 2013.

18 Hole Championship Golf Course

- 11:30 am: Check-In/Lunch
- 1:00 pm: Shotgun Start
- 6:00 pm: Dinner and Awards

Event Costs:

- $200 per player
- $750 per foursome
- $65 for dinner only
President’s Message

By John A. Fusco, P.E., LEED AP

I would like to thank Nahom A. Gebre, Esq., P.E., Risk Management Attorney from Victor O. Schinnerer & Company, Inc., and Christopher O’Neil and his staff from O’Neill and Associates for presenting at April’s meeting on Professional Liability. There were many questions asked, as it was a very informative presentation and pertinent topic.

Wednesday May 8 – Our Annual Golf Outing at The Links in Union Vale. Our flyer has been emailed out and is available on our website. May 6th is the last day to register, so get your foursomes together! Proceeds from this event go towards our scholarship efforts and chapter operations.

Our final meeting in June is still in the planning stages, we may have a building tour and presentation in the works. Stay tuned for details!

Thanks to continued support, the Scholarship Committee was able to award two scholarships to engineering students in our area, each for $1,500. Simon Mysliwiec of Manhattan College and Mitchell Bell of Fairfield University, both mechanical engineering juniors, are this year’s recipients. Congratulations to both!

Again our chapter operates because of the efforts of the Board of Governors, Officers, and Committee Chairs. For us to continue this effort, we need volunteers to make it work. Any one of the board members or officers would be more than happy to discuss opportunities with those interested in chapter activities and leadership roles.

Please check for our emails and our website for information on upcoming events and to download current and past newsletters.

John A. Fusco, P.E., LEED AP
Bi-State Chapter President

Historical Note — Bob Roston, Bi-State Historian

Fridge with Radio

“The Crosley Corp. has introduced a Shevador electric refrigerator model equipped with a built-in radio. “It has been said that sixty percent of a housewife’s time is spent in the kitchen working. Now by having a Shevador refrigerator with a radio built in its top, she may listen to the program she wants. Most radios are placed in the living room which is two or three rooms away from the kitchen, and the housewife either has to miss the program when she is in the kitchen or turn up the radio in the living room so loud that it will ordinarily drive everyone out of the house”

— “What’s Going on in the Mechanical Refrigerator Field”

Ice and Refrigeration, May 1937

ASHRAE Publishes Second Edition of Hospital Design Manual

Health care HVAC systems serve facilities in which the population is uniquely vulnerable and exposed to elevated risks of health, fire and safety hazard. These heavily regulated, high-stakes facilities undergo continuous maintenance, verification, inspection and recertification, typically operate 24/7 and are owner occupied for long life. A newly published manual from ASHRAE provides guidance on addressing these issues for mechanical and consulting engineers, designers, architects, facility managers, infection control personal, maintenance staff, contractors, developers and code accreditation and licensure officials.

“HVAC Design Manual for Hospitals and Clinics, Second Edition,” provides in-depth design recommendations based on best practices, and presents proven, cost effective and reliable solutions that result in low maintenance cost and high reliability with systems providing desired performance and efficiency. The book, a complete rewrite of the first edition, focuses specifically on HVAC system design for health care facilities, omitting general system descriptions that are readily available in other ASHRAE publications.

“The manual presents a unified and comprehensive summary of engineering background on the standard, how to meet it and alternatives for best engineering practices beyond the minimum requirements,” Daniel Koenigshofer, P.E., editor of the manual, said. “A principle objective of the manual is to present what is different about designing HVAC systems for hospitals and healthcare facilities.” Chapter Two describes how the principles of infection control have influenced the regulations which in turn are the bases for the unique design principles needed for hospitals.

The cost of “HVAC Design Manual for Hospitals and Clinics, Second Edition” is $115 ($99 ASHRAE members). To order, contact ASHRAE Customer Contact Center at 1-800-527-4723 (United States and Canada) or 404-636-8400 (worldwide), fax: 678-539-2129, or visit www.ashrae.org/bookstore.
Research Promotion Contribution Form

PLEASE COMPLETE THE INFORMATION BELOW AND RETURN WITH YOUR CONTRIBUTION TO:

James Kolk
528 Middle Street
North Babylon, NY 11703
Phone: 631-219-8502 Fax: 610-923-3352

Please accept my research investment in the amount of $______________
Make checks out to ASHRAE Research.

Name___Member #____________________
Company__Chapter Bi-State______________
Address___
City___State_________Zip____________

Please check one: () Personal contribution
 () Company contribution

Charge my gift to: () Visa () Master Card () American Express
Credit Card #__________________________Expiration Date__________________
Signature__

Donors are recognized for their contributions as follows:

Honor Roll contributors are listed in the October ASRHAE Journal and receive the commemorative coin recognizing Giants in HVAC&R invention or innovation.

Individual Honor Roll beginning at $100
Corporate Honor Roll beginning at $150

Investors with contributions of $250 or more receive a wall plaque that can display six commemorative coins.

Contributions in any amount are gratefully received and 100% of the contribution goes directly to research. All contributions are tax deductible.
ASHRAE Bi-State Chapter

Annual Golf Outing

Wednesday, May 8, 2013
The Links at Union Vale

Schedule:
- 11:30 am: check-in/lunch
- 1:00 pm: shotgun start
- 6:00 pm: dinner/awards

Costs:
- $200 per player
- $750 per foursome
- $65 for dinner only

Return this form with payment by May 6, 2013

Note: If payment is not received prior to the golf outing, your reservation may not be accepted.

Name: __________________________ Phone: __________________________

Company Name: ___

Company Address: __

Email: __________________________

☐ Individual for lunch/golf/dinner …… $200
☐ Individual for dinner only $65
☐ Foursome for lunch/golf/dinner …… $750
☐ Tee Sponsor ………………………………. $200
☐ Beverage Cart Sponsor $1000
☐ Lunch Sponsor …………………………. $1500

Please check off participation level above and make checks payable to: ASHRAE Bi-State Chapter.

List names of golfers below. (If less than four, the golf committee will complete pairings.)

1. ____________________________ 2. ____________________________ 3. ____________________________ 4. ____________________________

Mail completed reservation form and check to:
ASHRAE Bi-State Golf c/o OLA Consulting Engineers, 50 Broadway, Hawthorne, NY 10532
Directions to The Links at Union Vale
153 North Parliman Road, Union Vale, NY 12540 (845)223-1002
www.thelinksatunionvale.com

From New York City and South:
- Take the Taconic State Parkway north to Route 82 North.
- Travel 4-1/2 miles and make a right onto County Route 89
- Take the first right onto North Parliman Road (1 mile).
- Golf Course is 1/2 mile on right.

From East or West:
- Take Interstate 84 (east or west) to the Taconic State Parkway north (6-3/4 miles) to Route 82 North.
- Travel 4-1/2 miles and make a right onto County Route 89.
- Take the first right onto North Parliman Road (1 mile).
- Golf course is 1/2 mile on right.

From the North:
- Take the Taconic State Parkway south to Route 55 east towards Pawling.
- Take a left at the first light (Route 82 north).
- Make a right onto County Route 89
- Take the first right onto North Parliman Road (1 mile).
- Golf Course is 1/2 mile on right.
Prototype High Concentration PhotoVoltaic Thermal System

A three-year, $2.4 million (2.25 million CHF) grant from the Swiss Commission for Technology and Innovation has been awarded to scientists at IBM Research; Airlight Energy, a supplier of solar power technology; ETH Zurich (Professorship of Renewable Energy Carriers) and Interstate University of Applied Sciences Buchs NTB (Institute for Micro- and Nanotechnology MNT) to research and develop an economical High Concentration PhotoVoltaic Thermal (HCPVT) system capable of concentrating solar radiation 2,000 times and converting 80 percent of the incoming radiation into useful energy. The system can also provide desalinated water and cool air in sunny, remote locations where they are often in short supply.

The prototype HCPVT system uses a large parabolic dish, made from a multitude of mirror facets, which are attached to a sun tracking system. The tracking system positions the dish at the best angle to capture the sun’s rays, which then reflect off the mirrors onto several microchannel-liquid cooled receivers with triple junction photovoltaic chips -- each 1x1 centimeter chip can convert 200-250 watts, on average, over a typical eight hour day in a sunny region. The entire receiver combines hundreds of chips and provides 25 kilowatts of electrical power. The photovoltaic chips are mounted on micro-structured layers that pipe liquid coolants within a few tens of micrometers off the chip to absorb the heat and draw it away 10 times more effectively than with passive air cooling. The coolant maintains the chips almost at the same temperature for a solar concentration of 2,000 times and can keep them at safe temperatures up to a solar concentration of 5,000 times.

The direct cooling solution with very small pumping power is inspired by the hierarchical branched blood supply system of the human body and has been already tested by IBM scientists in high performance computers. An initial demonstrator of the multi-chip receiver was developed in a previous collaboration between IBM and the Egypt Nanotechnology Research Center. “We plan to use triple-junction photovoltaic cells on a micro-channel cooled module which can directly convert more than 30 percent of collected solar radiation into electrical energy and allow for the efficient recovery of an additional 50 percent waste heat,” said Bruno Michel, manager, advanced thermal packaging at IBM Research. “We believe that we can achieve this with a very practical design that is made of lightweight and high strength concrete, which is used in bridges, and primary optics composed of inexpensive pneumatic mirrors – it’s frugal innovation, but builds on decades of experience in microtechnology.”

“The design of the system is elegantly simple,” said Andrea Pedretti, chief technology officer at Airlight Energy. “We replace expensive steel and glass with low cost concrete and simple pressurized metalized foils. The small high-tech components, in particular the microchannel coolers and the molds, can be manufactured in Switzerland with the remaining construction and assembly done in the region of the installation. This leads to a win-win situation where the system is cost competitive and jobs are created in both regions.”

The solar concentrating optics will be developed by ETH Zurich. “Advanced ray-tracing numerical techniques will be applied to optimize the design of the optical configuration and reach uniform solar fluxes exceeding 2,000 suns at the surface of the photovoltaic cell,” said Aldo Steinfeld, Professor at ETH Zurich.

With such a high concentration and a radically low cost design scientists believe they can achieve a cost per aperture area below $250 per square meter, which is three times lower than comparable systems. The levelized cost of energy will be less than 10 cents per kilowatt hour (KWh). For comparison, feed in tariffs for electrical energy in Germany are currently still larger than 25 cents per KWh and production cost at coal power stations are around 5-10 cents per KWh.

Current concentration photovoltaic systems only collect electrical energy and dissipate the thermal energy to the atmosphere. With the HCPVT packaging approach scientists can both eliminate the overheating problems of solar chips while also repurposing the energy for thermal water desalination and adsorption cooling.

To capture the medium grade heat IBM scientists and engineers are utilizing an advanced technology they developed for water-cooled high performance computers, including Aquasar and SuperMUC. With both computers water is used to absorb heat from the processor chips, which is then used to provide space heating for the facilities.

“Microtechnology as known from computer chip manufacturing is crucial to enable such an efficient thermal transfer from the photovoltaic chip over to the cooling liquid,” said Andre Bernard, head of the MNT Institute at NTB Buchs. “And by using innovative ways to fabricate these heat transfer devices we aim at a cost-efficient production.”

In the HCPVT system, instead of heating a building, the 90 degree Celsius water will be used to heat salty water that then passes through a porous membrane distillation system where it is vaporized and desalinated. Such a system could provide 30-40 liters of drinkable water per square meter of receiver area per day, while still generating electricity with a more than 25 percent yield or two kilowatt hours per day -- a little less than half the amount of water the average person needs per day according to the United Nations, but a large installation could provide enough water for a town. The HCPVT system can also provide air conditioning by means of a thermal driven adsorption chiller.
Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

The U.S. Energy Department has recognized the nation’s first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. Based in Churchill County, Nevada, Ormat Technologies’ Desert Peak 2 EGS project has increased power output of its nearby operating geothermal field by nearly 38 percent – providing an additional 1.7 megawatts of power to the grid and validating this emerging clean energy technology.

Enhanced geothermal system projects capture power from intensely hot rocks, buried thousands of feet below the surface, that lack the permeability or fluid saturation found in naturally occurring geothermal systems. EGS technologies utilize directional drilling and pressurized water to enhance flow paths in the subsurface rock and create new reservoirs, capturing energy from resources that were once considered uneconomical or unrecoverable. With the support of research and development investments across the Energy Department’s renewable energy and oil and gas portfolios, American companies like Ormat Technologies are now taking advantage of this untapped resource. The U.S. Geological Survey estimates that EGS in the United States has the potential to enable development of 100 to 500 gigawatts (GW) of geothermal resource capacity.

Leveraging a $5.4 million Energy Department investment – matched by $2.6 million in private sector funding – the Ormat Desert Peak project is extending the life of previously unproductive geothermal wells. Since the project’s start in 2008, the Energy Department has worked with Ormat, GeothermEx, the U.S. Geological Survey, and Lawrence Berkeley and Sandia National Laboratories to develop cost-effective and innovative production technologies that utilize protective environmental best practices and monitoring.

The Desert Peak project follows achievements at two other Energy Department-supported projects focused on demonstrating the commercial viability of EGS: The Calpine demonstration project at The Geysers in Middletown, California and the AltaRock demonstration project at the Newberry Volcano near Bend, Oregon. These projects have realized important achievements in the Department’s near- to long-term EGS strategy to develop resources ranging from existing fields to undeveloped or greenfield sites.

For more information on innovative, sustainable geothermal energy in the United States visit the Energy Department’s Geothermal Technologies Office website.
Bi-State Chapter Officers and Governors 2012—2013

<table>
<thead>
<tr>
<th>Position</th>
<th>First Name</th>
<th>Last Name</th>
<th>Email</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Officers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>President</td>
<td>John</td>
<td>Fusco</td>
<td>jfusco@olace.com</td>
<td>(914) 747-2800</td>
<td>(914) 747-0453</td>
</tr>
<tr>
<td>President-Elect</td>
<td>Michael</td>
<td>Circosta</td>
<td>mjcarmonk@optonline.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vice President</td>
<td>Cliff</td>
<td>Konitz</td>
<td>c.konitz@verizon.net</td>
<td>(845) 297-5864</td>
<td>(845) 297-5864</td>
</tr>
<tr>
<td>Secretary</td>
<td>Brendan</td>
<td>Smith</td>
<td>bsmith@lynsaar.com</td>
<td>(914) 741-1290 ext 17</td>
<td></td>
</tr>
<tr>
<td>Treasurer</td>
<td>Dennis</td>
<td>LaVopa</td>
<td>dlavopa@dlFlowTech.com</td>
<td>(845) 265-2828</td>
<td>(845) 265-2745</td>
</tr>
<tr>
<td>Governors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOG (term ends June 2015)</td>
<td>Terry</td>
<td>Connor</td>
<td>Terry.Connor@jci.com</td>
<td>(914) 593-5223</td>
<td>(914) 593-5201</td>
</tr>
<tr>
<td>BOG (term ends June 2015)</td>
<td>Brendan</td>
<td>Smith</td>
<td>bsmith@lynsaar.com</td>
<td>(914) 741-1290 ext 17</td>
<td></td>
</tr>
<tr>
<td>BOG (term ends June 2015)</td>
<td>James</td>
<td>Dolan</td>
<td>jdolan@olace.com</td>
<td>(914) 747-2800</td>
<td>(914) 747-0453</td>
</tr>
<tr>
<td>BOG (term ends June 2014)</td>
<td>Steven</td>
<td>Abbattista</td>
<td>sabbattista@olace.com</td>
<td>(914) 747-2800</td>
<td>(914) 747-0453</td>
</tr>
<tr>
<td>BOG (term ends June 2014)</td>
<td>Cliff</td>
<td>Konitz</td>
<td>c.konitz@verizon.net</td>
<td>(845) 297-5864</td>
<td>(845) 297-5864</td>
</tr>
<tr>
<td>BOG (term ends June 2014)</td>
<td>Joseph</td>
<td>Trongone</td>
<td>jatrong@optonline.net</td>
<td>(914) 741-1290</td>
<td></td>
</tr>
<tr>
<td>BOG (term ends June 2014)</td>
<td>Michael</td>
<td>Circosta</td>
<td>mjcarmonk@optonline.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOG (term ends June 2013)</td>
<td>Dennis</td>
<td>LaVopa</td>
<td>dlavopa@dlFlowTech.com</td>
<td>(845) 265-2828</td>
<td>(845) 265-2745</td>
</tr>
<tr>
<td>BOG (term ends June 2013)</td>
<td>Robert</td>
<td>Roston</td>
<td>bob@rostonfamily.com</td>
<td>(914) 761-3364</td>
<td>(203) 504-7949</td>
</tr>
<tr>
<td>Chapter Delegate</td>
<td>Brendan</td>
<td>Smith</td>
<td>bsmith@lynsaar.com</td>
<td>(914) 741-1290 ext 17</td>
<td></td>
</tr>
<tr>
<td>Chapter Alternate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Committee Chairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Promotion</td>
<td>James</td>
<td>Kolk</td>
<td>jkolk@victaulic.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Activities</td>
<td>Nicholas</td>
<td>Salomone</td>
<td>nicksalomone@gmail.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membership Promotion</td>
<td>James</td>
<td>Dolan</td>
<td>jdolan@olace.com</td>
<td>(914) 747-2800</td>
<td>(914) 747-0453</td>
</tr>
<tr>
<td>Refrigeration</td>
<td>John</td>
<td>Fusco</td>
<td>jfusco@olace.com</td>
<td>(914) 747-2800</td>
<td>(914) 747-0453</td>
</tr>
<tr>
<td>Webmaster</td>
<td>Cliff</td>
<td>Konitz</td>
<td>c.konitz@verizon.net</td>
<td>(845) 297-5864</td>
<td>(845) 297-5864</td>
</tr>
<tr>
<td>Newsletter Editor</td>
<td>Michael</td>
<td>Gordon</td>
<td>gordonm@emfcontrols.com</td>
<td>(914) 747-1007</td>
<td>(914) 747-1054</td>
</tr>
<tr>
<td>Historian</td>
<td>Robert</td>
<td>Roston</td>
<td>bob@rostonfamily.com</td>
<td>(914) 761-3364</td>
<td>(203) 504-7949</td>
</tr>
<tr>
<td>Reception</td>
<td>Joseph</td>
<td>Trongone</td>
<td>jatrong@optonline.net</td>
<td>(914) 332-7658</td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>Cliff</td>
<td>Konitz</td>
<td>c.konitz@verizon.net</td>
<td>(845) 297-5864</td>
<td>(845) 297-5864</td>
</tr>
<tr>
<td>Golf</td>
<td>Steven</td>
<td>Abbattista</td>
<td>sabbattista@olace.com</td>
<td>(914) 747-2800</td>
<td>(914) 747-0453</td>
</tr>
</tbody>
</table>

Why Be Involved in a Local Chapter?

- Learn about the latest technologies presented in the program sessions
- Attain continuing education credits
- Meet industry associates and discuss local concerns
- Network amongst designers, installers, vendors, educators, in your local area to help improve business for all
- Share experiences with others
- Enjoy a social hour
- Carry out ASHRAE’s mission on a local level

To advance the arts and sciences of heating, ventilating, air conditioning and refrigerating to serve humanity and promote a sustainable world.
ASHRAE Region I 2012-13 Executive Committee and Society Contacts

DRC – Director & Regional Chair
Joseph L Furman
Automated Logic
16 Country Way
Wallingford, CT 06492-5356
W: (203)678-2208
joe.furman@automatedlogic.com

ARC – Assistant Regional Chair & Treasurer
Spencer Morasch
Jersey Central Power & Light
331 Newman Springs Rd Bldg. 3 Suite 325
Red Bank, NJ 07701-5688
W: (732)212-4133
smorasch@firstenergycorp.com

Nominating Committee Member
Emery Otruba, P.E.
Evergreen Engineering
262 Johnson Hill Rd
Hoosick Falls, NY 12090-4615
W: (518)225-2771
eotruba@verizon.net

Nominating Committee Alternate
Russell J Stuber
U & S Services Inc
233 Fillmore Ave Ste 11
Tonawanda, NY 14150-2316
W: (716)693-4490
stuberr@usservicesinc.com

Nominating Committee 2nd Alternate
Darcy A Carbone
Stebbins-Duffy, Inc.
6 Damon Rd
Medford, MA 02155-2903
W: (617)957-2567
dcarbone@stebbinsduffy.com

RVC Research Promotion
Chris Phelan
Thermco
228 Scoles Ave
Clifton, NJ 07012
W: (617)957-2567
chrisphelan@thermcoreps.com

RVC Chapter Technology Transfer
Alexander Weiss, PE
8 Bergen Beach Pl
Brooklyn, NY 11234-5743
W: (718)251-1154
weisseng@gmail.com

RVC Student Activities
Om Taneja, PhD, Dr.
USDA
79 Summit Dr
Basking Ridge, NJ 07920-1960
W: (212)264-4465
om.taneja@gsa.gov

Regional Chapter Programs Chair
Peter Oppelt
R.F. Peck Co.
191 Moorland Rd
Rochester, NY 14612-3421
W: (585)227-1720
poppelt@rfpeck.com

Regional Refrigeration Chair
Mark Cambria, PE
M/E Engineering, PC.
433 State Street, Suite 410
Schenectady, NY 12305
W: (518)533.2171
mcambria@meengineering.com

Regional Historian
Alexander Weiss, PE
8 Bergen Beach Pl
Brooklyn, NY 11234-5743
W: (718)251-1154
weisseng@gmail.com

Regional Electronics Communication Committee Chair & Newsletter Judge
Heather L. Platt, P.E.
SCMC, LLC.
PO Box 1031
Niagara Falls, NY 14304
W: (716)255-1462
HPlatt@SenecaCM.com

Regional Electronics Communication Committee Alternate
Kevin Gallen, P.E.
Gallen Engineering, PC

Regional Representative
Garry N. Myers
WSP Flack + Kurtz
73 Bonnie Way
Allendale, NJ 07401-1127
W: (212)951-2815
Garry.Myers@wspfk.com

Regional Young Engineers in ASHRAE
Cara S Martin
Novus Engineering
25 Delaware Ave.
Delmar, New York 12054
W: (518)439-8235
cmartin@novusengineering.com

Director of Member Services
Joyce Abrams
ASHRAE
1791 Tullie Circle, N.E.
Atlanta, GA 30329
404.636.8400
jabrams@ashrae.org

Communications Manager
Jodi Scott
ASHRAE
1791 Tullie Circle, N.E.
Atlanta, GA 30329
404.636.8400
jscott@ashrae.org
Notice to business card advertisers:

We are currently accepting business card advertisements for this year’s newsletters. The cost of a business card ad is $125.00. The newsletter is published monthly, September through June (ten issues). That means for $125.00 ($12.50 an issue), your business card ad will circulate to approximately 300 recipients a month or an advertising cost of approximately 4 cents/recipient.

If you are interested in placing an ad, please forward a business card and check (payable to ASHRAE Bi-State) to:

ASHRAE Bi-State Chapter
DL Flow Tech
2421 Route 52
Hopewell Junction, NY 12533

Employment Opportunities

Employment ads may be submitted for inclusion in The Exchanger as follows:

1. $100.00 from companies placing ad for one (1) month.
2. $150.00 from companies placing ad for two (2) months.
3. No charge for members looking for employment.

Seattle School is World’s Fourth ‘Living Building’

Bertschi School, an independent elementary school in Seattle now features the first Living Building on the West Coast and the world’s fourth fully certified “Living Building.” Completed in February 2011, Bertschi’s Living Building Science Wing is a 3,380 ft² (314 m²) interactive learning facility for students ages 5-11. It is the first built project to meet the standards of version 2.0 of the Living Building Challenge, a sustainable building certification program that integrates urban agriculture and the use of healthy building materials. The building is net zero energy and water. A 20 kW photovoltaic system provides all of the electricity, and cisterns collect rainwater that is used for irrigation and flushing the composting toilet.
ASHRAE, founded in 1894, is a building technology society with more than 50,000 members worldwide. The Society and its members focus on building systems, energy efficiency, indoor air quality and sustainability within the industry. Through research, standards writing, publishing and continuing education, ASHRAE shapes tomorrow’s built environment today.

ASHRAE will be the global leader, the foremost source of technical and educational information, and the primary provider of opportunity for professional growth in the arts and sciences of heating, ventilating, air conditioning and refrigerating.

Upcoming Meetings

<table>
<thead>
<tr>
<th>Month</th>
<th>Date</th>
<th>Promotion</th>
<th>Main Presentation</th>
<th>Tech Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>5/8/2013</td>
<td>Student Activities</td>
<td>Golf Outing</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>6/12/2013</td>
<td>Student Scholarships</td>
<td>Hold the date</td>
<td></td>
</tr>
</tbody>
</table>

Closed Windows and Airborne Infection Risk in Hospitals

The chance of infection in some hospital wards varies dramatically according to whether windows are left open, according to a recent study. A University of Leeds team studied airflow in a “Nightingale” ward — a traditional hospital ward design with two rows of up to 30 beds — by using tracer gases to simulate how airborne infections spread. The researchers found ventilation in the ward was generally good when windows were left open, keeping the danger of airborne infection low. However, when the windows were closed, the measured exposure to infection was typically four times higher, equivalent to a ventilation rate of only 1.5 air changes an hour (ach). ASHRAE/ASHE Standard 170-2008, Ventilation of Health Care Facilities, calls for a minimum of two outdoor ach and a minimum of six total ach in patient rooms. “People are being told to seal up their buildings to save energy. We found, if you do that without alternative ventilation systems, you could be increasing the airborne infection risk significantly,” said lead investigator Cath Noakes, Ph.D.

Statements made in this publication are not expressions of the Society or of the Chapter and may not be reproduced without special permission of the chapter.