# Hot Water Boilers and Controls Why Condensing Boilers are "Different"

Presented Oct. 14, 2008 Long Island Chapter, ASHRAE

#### H.W. Boilers and Controls

- Major types of boilers
  - Advantages and disadvantages
  - Resistance to thermal shock
  - Firetube vs. Watertube
- Minimizing thermal shock
  - Piping arrangements
  - Control systems, boiler and building
  - Operations– ΔT

- Boiler efficiency
  - Relevant factors
- Condensing boilers
  - How efficient are they?
  - Major types
  - Applications
- Piping arrangements
  - Primary-Secondary
  - Single Loop
  - Hybrid systems
- Control Systems
  - Conventional boilers
  - Condensing boilers

# Hot Water Boiler Types

#### Firebox

- Sectional Cast Iron
- Vertical Tubeless
- Scotch Marine
- Flexible Watertube
- Finned Copper Tube
- Condensing
- Industrial Watertube

#### Boiler Types NOT Recommended

#### Firebox

- Geometry makes uniform circulation difficult
- Many right angle welds concentrate stress
- Sectional Cast Iron
  - Less efficient than other types
  - Larger units are easily damaged by thermal shock
  - Eutectic cast iron boilers are an exception

#### Thermal Shock

#### Resistant boilers

- Copper fin tube
- Flexible Watertube boilers
- Most condensing boilers
- Eutectic cast iron boilers

- Shock prone boilers
  - Conventional Cast Iron
  - Scotch Marine
  - Firebox Boilers

#### Thermal Shock

- Thermal Shock results from
  - rapid temperature changes in the boiler
  - uneven temperature changes to boiler vessel
  - parts of boiler expanding (or contracting) more rapidly than other parts
  - rigidity in boiler construction
  - continuous "flexing" of rigid parts
  - can be caused by frequent cycling
  - for example: shutting plant down at night
- Thermal Shock results in
  - leaking tubes
  - cracked tube sheets
  - cracked sections in cast iron boilers

#### Causes of Thermal Shock

- Return of cold water to a hot boiler
  - system piping in building cools down overnight
  - boiler is kept hot
  - secondary pumps over pump the primary pumps
- Return of hot water to a cold boiler
  cold boiler is started after being isolated from flow
- Failure to bring a cold boiler up to temp slowly
  - cold boiler should stay at low fire until up to temperature, at least for 30 minutes

#### Four pass water backed firetube



#### Firetube Hot Water Boiler Design



#### Scotch marine firetube boiler

- Advantages
  - Very efficient
  - Sizes up to 800 HP
  - Burn any fuel
  - Low waterside Δ P
  - Easy to clean
  - Easy to maintain
    - Replace or plug tubes
    - Clean tubes

- Disadvantages
  - Prone to thermal shock
    - Slow warm-up
    - Maintain temperature in standby boilers
  - Floor space requirements
    - Tube pull area
  - Must not condense
  - Typical 20 30°F ΔT limit

On many large projects, firetube hot water boilers are extremely efficient and reliable, but hydronic system and control system design must be adapted to the boilers needs

# Copper Fin Tube Boilers

•Fan assisted – sealed combustion

- Low emissions
- •Medium efficiency -- 80 to 84%
- Staged Combustion
- Atmospheric
  - •Draft hood
  - Modulating combustion
- •Return water temp down to 105°F
- •Can be stacked two high to conserve floor space (no offset)
- •From 122 MBH to 4000 MBH
- •Condensing heat exchanger can be added

For Hydronic Heating and Domestic Hot Water

Indoor and Outdoor



#### Copper Finned Tube Heat Exchanger







#### Hydronic Systems for Fin Tube Boilers

- Generally use primary-secondary scheme
- Primary pump is supplied on the boiler
  - Primary pump sized to match the boiler requirements
    - Too much flow can cause erosion of boiler tubes
    - Too little flow can cause local overheating
- Boiler mounted pumps run with the boiler
  - Shut down when boiler is off line
- Secondary pumps run via BMS control

# Finned Copper Tube Summary

#### Pro

- High efficiency
- Low standby losses
- Low cost
- No thermal shock
- Low water temperatures
- Sealed combustion
- Direct heating of DHW
- Simple to maintain
- Low cost
- Can offer Condensing Operation

#### Con

- Gas fired only
- Flow sensitive
  - Use primary-secondary systems
  - Excess flow erosion
  - Low flow scale formation
  - Must have flow to operate
- Beware of rated efficiencies
- Condensing versions use secondary heat exchangers

#### Flexible Watertube Boilers



#### Small footprint

- 143 HP unit is 47.5"w by 160" long by 86" high
- □ 34" tube pull to each side
- Can be field erected
  - no welding or tube rolling
  - build in one week
- Guaranteed against
  Thermal Shock
- Requires a minimum flow

#### Flextube Boilers

- Water in the Tubes/Exhaust Gases Pass Around the Tubes
- Up to 12 MMBtu/hr Input
- Multiple Passes
- Hot Water/Low Pressure Steam Boilers -High Resistance to Thermal Stress
- Heating Applications

#### Industrial Watertube Boilers

Used for low, medium and high temperature hot water and high pressure steam Sizes from 15 to 100 million BTU/hr Tubes are tangent allowing for individual expansion and contraction

PLAN VIEW



#### Boiler Water Flow versus $\Delta T$

| Boiler | Boiler<br>Output<br>(x1000) | SYSTEM TEMPERATURE DROP - DEGREES F |      |      |      |      |     |     |     |     |     |
|--------|-----------------------------|-------------------------------------|------|------|------|------|-----|-----|-----|-----|-----|
|        |                             | 10                                  | 20   | 30   | 40   | 50   | 60  | 70  | 80  | 90  | 100 |
| ПР     | BTU/HR                      | MAXIMUM CIRCULATION RATE - GPM      |      |      |      |      |     |     |     |     |     |
| 15     | 500                         | 100                                 | 50   | 33   | 25   | 20   | 17  | 14  | 12  | 11  | 10  |
| 20     | 670                         | 134                                 | 67   | 45   | 33   | 27   | 22  | 19  | 17  | 15  | 13  |
| 30     | 1005                        | 200                                 | 100  | 67   | 50   | 40   | 33  | 29  | 25  | 22  | 20  |
| 40     | 1340                        | 268                                 | 134  | 89   | 67   | 54   | 45  | 38  | 33  | 30  | 27  |
| 50     | 1675                        | 335                                 | 168  | 112  | 84   | 67   | 56  | 48  | 42  | 37  | 33  |
| 60     | 2010                        | 402                                 | 201  | 134  | 101  | 80   | 67  | 58  | 50  | 45  | 40  |
| 70     | 2345                        | 470                                 | 235  | 157  | 118  | 94   | 78  | 67  | 59  | 52  | 47  |
| 80     | 2680                        | 536                                 | 268  | 179  | 134  | 107  | 90  | 77  | 67  | 60  | 54  |
| 100    | 3350                        | 670                                 | 335  | 223  | 168  | 134  | 112 | 96  | 84  | 75  | 67  |
| 125    | 4185                        | 836                                 | 418  | 279  | 209  | 168  | 140 | 120 | 105 | 93  | 84  |
| 150    | 5025                        | 1005                                | 503  | 335  | 251  | 201  | 168 | 144 | 126 | 112 | 100 |
| 200    | 6695                        | 1340                                | 670  | 447  | 335  | 268  | 224 | 192 | 168 | 149 | 134 |
| 250    | 8370                        | 1675                                | 838  | 558  | 419  | 335  | 280 | 240 | 210 | 186 | 167 |
| 300    | 10045                       | 2010                                | 1005 | 670  | 503  | 402  | 335 | 287 | 251 | 223 | 201 |
| 350    | 11720                       | 2350                                | 1175 | 784  | 587  | 470  | 392 | 336 | 294 | 261 | 236 |
| 400    | 13400                       | 2680                                | 1340 | 895  | 670  | 535  | 447 | 383 | 335 | 298 | 268 |
| 500    | 16740                       | 3350                                | 1675 | 1120 | 838  | 670  | 558 | 479 | 419 | 372 | 335 |
| 600    | 20080                       | 4020                                | 2010 | 1340 | 1005 | 805  | 670 | 575 | 502 | 448 | 402 |
| 700    | 23450                       | 4690                                | 2345 | 1565 | 1175 | 940  | 785 | 670 | 585 | 520 | 470 |
| 800    | 26780                       | 5360                                | 2680 | 1785 | 1340 | 1075 | 895 | 765 | 670 | 595 | 535 |

# A brief discussion of boiler efficiency

Boiler efficiency depends on many factors

Boiler design

Percent load (firing rate)

Fuel being fired

- Temperature of fluid (water or steam) in boiler
- Always try to obtain efficiency guaranties:

Based on fuel being fired

- Based on actual design water temperatures
- Don't believe everything you read

#### Boilers are really heat exchangers

- The lower the stack temperature the higher the efficiency
- The lower the fluid temperature the lower the stack temperature
- Heat recovery exchangers can be used to recover energy in flue gasses
- Scotch Marine boilers are extremely efficient heat exchangers
- Conventional boilers capture sensible heat
- Condensing boilers capture sensible AND latent heat

#### Efficiency by Losses

- Fuel energy in = heat energy out
- Energy leaves in hot water (or steam) or as a loss
- Efficiency = 100% minus losses
- Greatest loss is stack loss (100% minus stack loss = "Combustion Efficiency"
  - Typically 15% to 20% including latent and sensible heat
  - With natural gas, 10% of energy in fuel is lost as latent heat of vaporization
  - With fuel oil, 4% of energy in fuel is lost as latent heat
  - Remainder of stack loss is sensible heat
  - Sensible heat loss increases with excess air
- Second greatest loss is radiation loss
  - Typically  $\frac{1}{2}$  to 3% of energy input at maximum load
  - Radiation loss is a constant BTU loss, not a constant %
- Typically other losses from boilers are insignificant.

### Condensing Boilers

- One ft<sup>3</sup> natural gas yields two ft<sup>3</sup> water vapor.
- Two ft<sup>3</sup> water vapor condenses to one ounce water
- About 9% of the BTU content in each ft<sup>3</sup> natural gas burned leaves the stack as latent heat of vaporization in this water vapor
- By condensing this water and lowering the stack temperature, 98% efficiency can be reached. Some heat pump supplement boilers can achieve this.
- A 1 million BTU/hr boiler will produce 6 gallons/hr liquid water when fully condensing
- This water will only condense at gas temp <135°F</p>
- No manufacturer's boiler can take full advantage of typical 160 to 180F hydronic applications

#### Cautions !!!!!!!!!!!

- Any boiler can be a condensing boiler
  - Just return water cooler than 130°F
  - Water will condense somewhere in the boiler
- Conventional boilers will be damaged
  - By corrosion or failed refractory from condensation
  - By sooting due to blocked fins (copper fin tube)
- Condensing boilers are special
  - They can handle flue gas condensate safely
  - They can also run at non-condensing temperatures
- Condensing boilers need special flue material
  - AL29-4C or PVC (316L is used in Europe)

### Types of Condensing Boilers

- Firetube high water volume
  - Can be used in variable flow single loop systems
  - Forgiving of low or no water flow
  - Examples are Pulse, Benchmark, Vantage
  - The higher the water volume, the lower the flow can be with boiler firing
- Watertube low water volume
  - Must be used in primary secondary systems
  - Require a minimum water flow through boiler
  - Examples are Wall mounted European design, Copper Fin, Aluminum heat exchanger design

Examples of firetube condensing boilers

#### Vertical Extended Surface Firetube

- High water volume
- Tubes have internal "fins"
- Full condensing Operation
- High water volume
- No minimum water flow
- No minimum water temperature
- Efficiency up to 98%
- Sealed Combustion available
- Screen type low NOx burner



#### Extended Heating Surface Tubes

- Stainless steel tubes
- Alloy finned inserts
  - Exceptional heat transfer
- Down fired
- Efficiencies up to 98%
- Extremely quiet



# Efficiency as a function of percent firing rate and return temperature



#### Pulse Boilers

- Use fuel energy to pull in combustion air
  - No combustion air blower motor (except for start)
- High water volume design
- Require vibration isolation on mount and piping
- Special designs available for low emitted noise
- Extremely compact

#### Internals of Pulse Boilers





- Is not sensitive to water flow
- Uses very little electrical energy – 0.25 amps, 120V

#### Pulse Boiler internal construction



# Benchmark Series Low mass firetube design



#### Oil as a back-up fuel

- NYC does not allow use of propane
  - Most condensing boilers also burn propane
  - Many designs allow for automatic switch to propane
- Very few condensing boilers can burn oil
- #2 oil is used as a back-up in some designs
  Boiler is prevented from condensing when on oil
  Water temperature is automatically raised

Dual Vessel Condensing Boiler Dual Fuel Capable

- Fully condensing on gas
- Burns #2 oil as backup
- Sizes 2, 3 and 4 million
  BTU



# Cut away view of dual fuel condensing boiler



#### Compact watertube condensing boiler



# Compact watertube condensing boiler



**Premix Burner** 



316L SS Heat Exchanger



Hydro-Formed water-tubes

# Efficiency of European design boiler

- Very low electrical consumption
- Extremely efficient heat exchanger
  - □ Flue gas temperature is 20°F above inlet water

#### Compact

316L heat exchanger allows one unit to be applied for hydronic or domestic hot water

### Condensing boilers – Special concerns

- Flue gasses will condense in flue piping
  - Need constant pitch TOWARD boiler
  - Need drain sections
- Condensate is acidic
  - Neutralize with limestone chips
  - Use trap to keep flue gasses out of neutralizer and out of boiler room
- Follow manufacturers instructions for venting
  - Watch differential between comb. air and exhaust.
- Follow NYC codes for spacing and size limitations
  - Sidewall venting limited to 350,000 Btu input
  - Minimum spacing between vents
  - No venting into shaft-ways or small courtyards or over sidewalks

#### Hot Water System Design

- Allow room for expansion of water
- Provide constant flow through primary loop
  - Past all temperature sensors
  - Through flow sensitive boilers
- Purge all air from system
- Balance flow through operating boilers
- Prevent thermal shock damage to boilers
- Prevent steaming maintain water pressure
- Keep water inlet and outlet temperatures within design limits

#### Three Good HW Operating Practices

- Maintain Water Quality
  - Periodic water analysis to see when treatment is needed
  - Monitor make-up water flow into system
- A planned preventative maintenance program.
  - Burner, Controls, Pressure Vessel, Refractory and circulating pumps and control valves

#### Hot Water Boiler Summary

- Provide continuous circulation through the boiler
- Prevent hot or cold shock
- Prevent frequent cycling
- Balance the flow through boilers
- Provide proper over-pressure
- Provide water treatment
- Check for leaks loss of water treatment

# Sequencing multiple conventional boilers

- Keep as few boilers on line as possible
- Warm-up of cold boilers
- Keep water temperatures above 140°F
- Keep warm for stand-by boilers
- Maintain flow through operating boilers
- Cool-down period for boilers shutting down
- Minimizing  $\Delta T$  on operating boilers
- Isolating boiler water temperature from building system temperature
- Control strategy depends on piping arrangement

# Basic two boiler system for conventional boilers

**Through Both Boilers Boiler Return Temperature** Water to and from With two boilers on line **Building System** Load is shared Could be 1000's Boiler  $\Delta T$  is same as Header  $\Delta T$ Boiler 2 of Gallons stored Boiler in piping With one boiler on line Water at return temp leaves #2  $\Delta T$  of #1 must double to maintain same Header  $\Delta T$ Secondary Pumps set **Building System Flow** (TT) **Boiler Outlet Header** Temperature Primary Pumps set **Boiler Flow** 

Constant and Equal Flow

#### Constant Flow System Notes

- Works fine for two boiler systems
- Temperature blending is a problem with 3
- Matches flow to load
- Allows one pump to be 100% spare
- Need to keep primary pumping rate high enough compared to building loop pumping rate to keep boiler return temperature above manufacturers minimum with cold water returning from building loop.

Three Firetube Boiler System Arranged for Full Automation



This system shows motorized isolation valves (a) to allow flow to be directed to operating boilers only. Flow control valves (b) are shown bypassing the on-off valves to make certain that there is some flow through the boiler to keep vessel hot. Blend pumps (c) serve to equalize the temperature within the boiler when in "keep warm" mode. Typically the lead pump (d) would run continuously, and would support the lead boiler. The first lag pump (e) would start and stop with the first lag boiler. A signal from boiler return temperature could be used to cut back on the building pumping rate if the return water temperature fell below the minimum (150 degF for CB firetube boilers.

Manual shutoff valves (f) would isolate a boiler from the loop for "cold standby" duty.

#### Primary Loop, Constant Differential



#### Single Hot Water Loop, Blend Valves



#### Primary Secondary Loops



#### 3 Hot Water Birs, 220 F. Primary Header pumps, Secondary Header VFD Pumps, Blend Pumps

#### Sequencing multiple condensing boilers

- Keep as many boilers on line as possible
  Condensing boilers are more efficient at low loads
  More residence time allows for more condensation
- Modulate operating boilers in parallel
- Reduce or stop flow through standby boilers
- Maintain minimum flow through operating units
  - Common header temp sensor needs flow
  - Minimum flow depends on boiler design

# Primary Secondary System with One Dedicated Pump per Boiler



Advantages of Individual Primary Pumps in Boiler Lead

- Flow through operating boilers is "constant"
  - Max  $\Delta$  T at full fuel input remains constant
  - Boilers have flow for sufficient mixing
- No flow through boilers that are off line
  - No blending of cool water with heated water in common discharge header
  - $\square$   $\Delta$  T of operating boilers is reduced
- Note: One pump must always run
  - So that there is flow past the header sensors

Modern control systems for multiple condensing boilers

- Generally furnished by boiler manufacturer
  - Most offer serial communications with individual boilers and with building automation systems
- Typical control functions:
  - Sequencing of boilers, pumps, and isolation valves
  - Full automation of entire primary loop
  - Building Management has control of secondary loop

The control sequence for multiple boilers is directly influenced by the way the system is piped. Consult your boiler vendor to make sure his control system matches your piping arrangement! Thank you!