

Good, Better, & Best Duct Design

An Overview for ASHRAE Bi State Chapter March 14, 2012

Introduction

- Why Duct Design?
- How to Design?
- Design Process (8 steps)
- Fundamentals
- Design Methods

Introduction

- Ductwork Types
- Sound Control
- Leakage Control
- Exposed Ductwork
- Specifications

FUNDAMENTALS

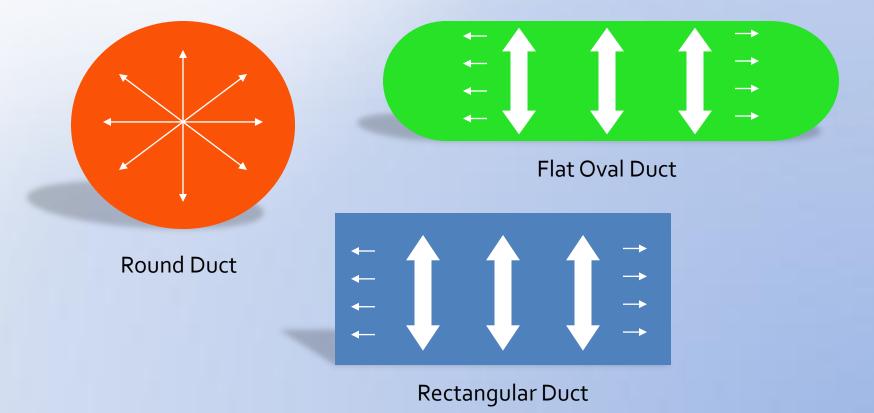
Good, Better, & Best Duct Design

Flow Rate (Q)

 $\mathbf{Q} = \mathbf{V} \times \mathbf{A}$

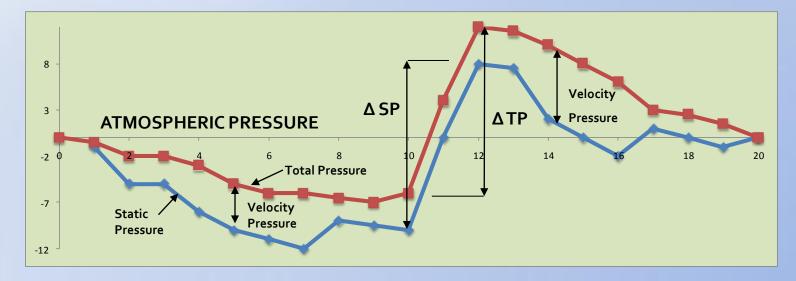
WHERE:

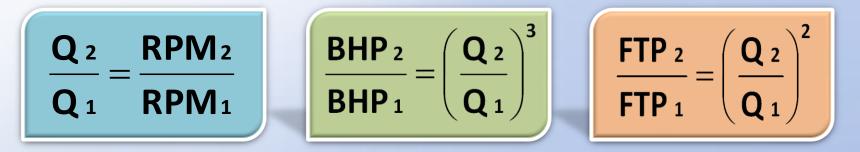
Q – volume flow rate of airflow (cfm)
V – velocity (ft/min)
A – area (sq ft)


Total Pressure = Static Pressure + Velocity Pressure TP = SP + VP

WHERE:

TP – in wg SP – in wg VP – in wg


Duct static pressure on various duct shapes


Fan and duct pressure changes in duct

Fan Laws

Q = volume flow rate of airflow (cfm)

RPM = fan speed (revolutions/minute)

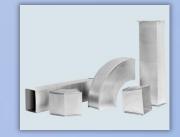
BHP = brake horse power (hp)

FTP = fan total pressure (in wg)

Good, Better, & Best Duct Design

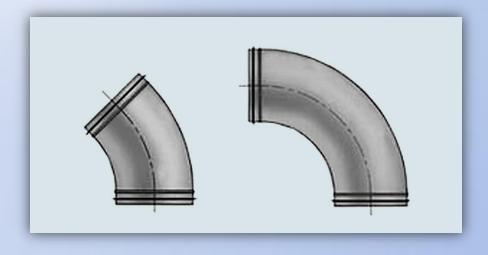
Design Considerations Duct Types

Round — spiral and longitudinal seam duct


Flat Oval — spiral and longitudinal seam duct

Rectangular

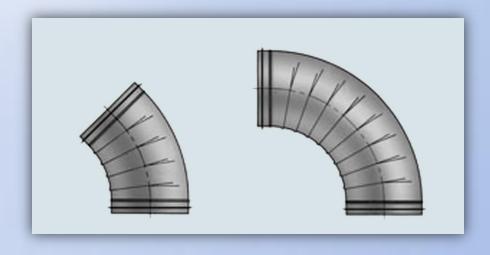
Other — semi/quarter round, triangular



Fitting Types

Elbows

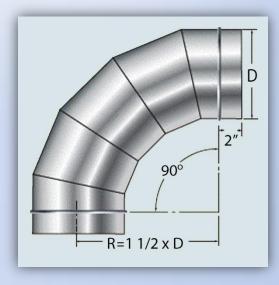
• Pressed – 45° and 90°, 3- to 12-inch diameter

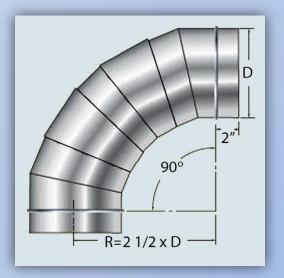


Fitting Types

Elbows

• Pleated – 45° and 90°, 3- to 16-inch diameter

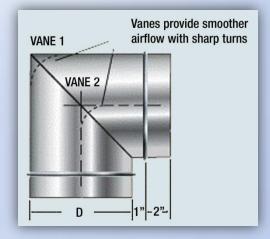


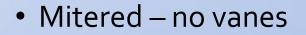

Fitting Types

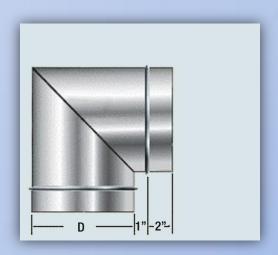
Elbows

Gored – std

• Gored – long radius

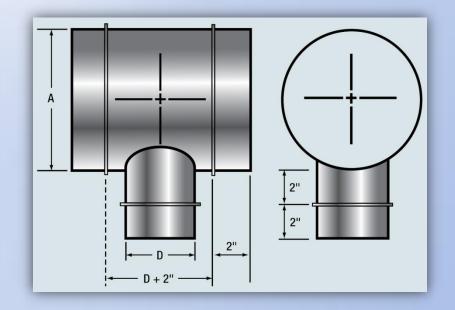




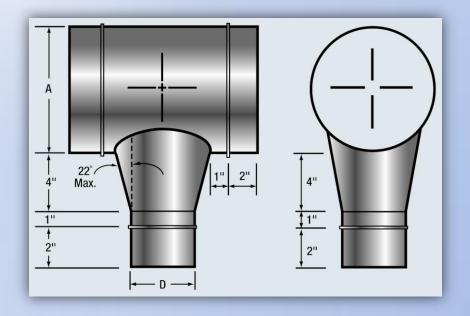

Fitting Types

Elbows

• Mitered – vanes

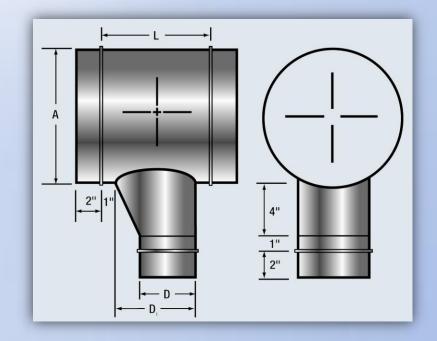

click to play video

Fitting Types


Divided Flow

• Straight Tee

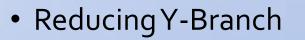
- Fitting Types
 - **Divided Flow**
 - Conical Tee

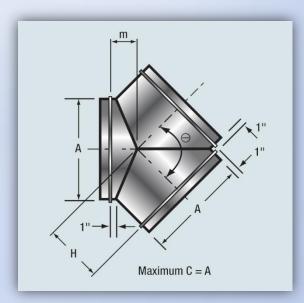


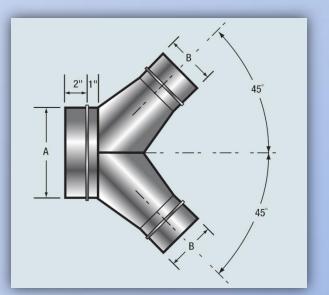
Fitting Types

Divided Flow

LoLoss[™] Tee

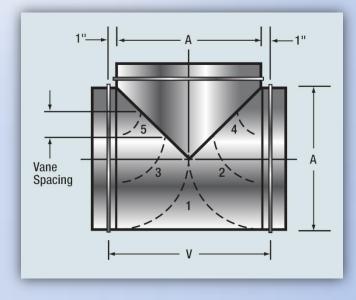


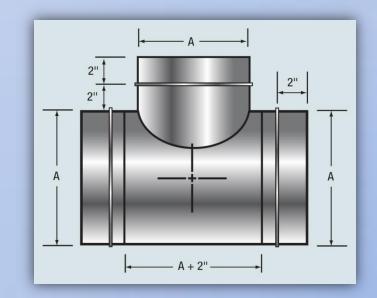



Fitting Types

Divided Flow

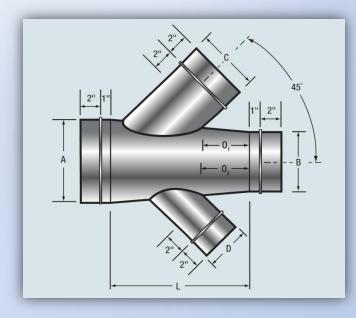
• Y-Branch

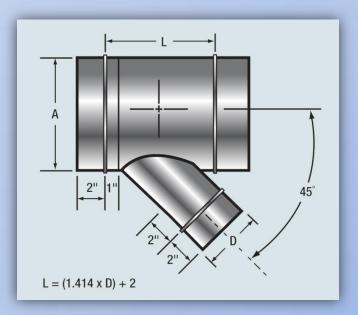



Fitting Types

Divided Flow

Bullhead Tee – vanes


• Bullhead Tee – no vanes



Good, Better, & Best Duct Design – An Overview

- Fitting Types
 - **Divided Flow**
 - Laterals

Fitting Types

Converging Flow

Supply Design Methods

- 1. Equal friction
- 2. Static regain
- 3. Velocity reduction
- 4. "T" method

Exhaust/Return Design Methods

1. Exhaust

- a. Constant velocity
- b. Equal friction

2. Return

- a. Equal friction
- b. Velocity reduction

Energy Consumption

Good, Better, & Best Duct Design

Energy Consumption

- Factors
 - 1. cfm, sp, efficiency, fuel cost, and hours
 - 2. Operation cost vs aspect ratio
- System Annual Operating Cost

Performance Considerations

Good, Better, & Best Duct Design

Performance Considerations

Annual Operational Costs

$$\frac{\text{Cost}}{\text{Year}} = \left(\frac{\text{Q}_{\text{fan}} \times \text{FTP}}{8,520 \times \text{eff}}\right) \times \frac{\text{Hours}}{\text{Year}} \times \frac{\$}{\text{kwh}}$$

WHERE:

Cost/Year = system first year operating cost (\$)

Q_{fan} = system volume flow rate (cfm)

FTP = system total operating pressure (in wg)

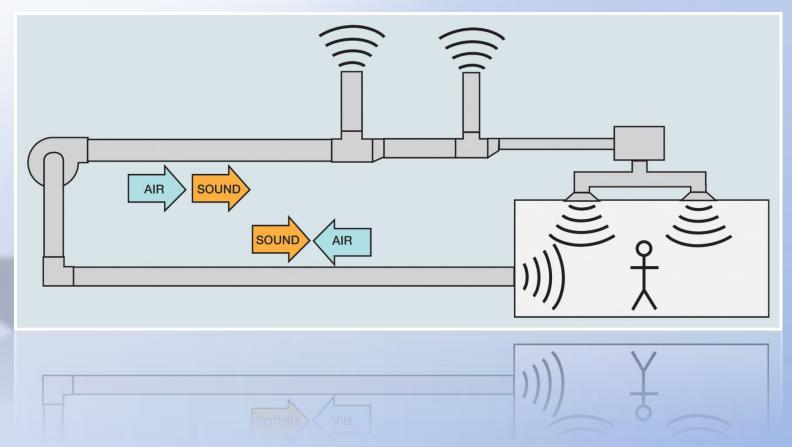
Hours/Year = number of hours the system operates in one year

\$/kwh = cost of energy

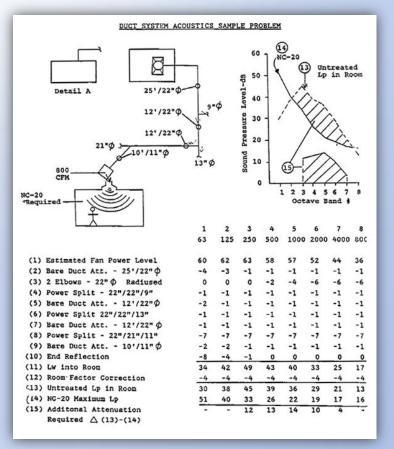
eff = fan/motor drive combined efficiency

8,520 = conversion factor to kwh (kilowatt hours)

Good, Better, & Best Duct Design

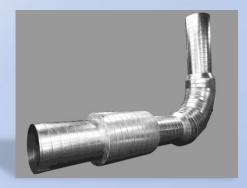


Design Process


- 1. Determine acceptable noise criteria (NC) rating for the space
- 2. Determine the sound source spectrum
- 3. Calculate the resultant sound level criteria
- 4. Compare resultant sound levels
- 5. Select the appropriate noise control products to attain the needed NC level

Duct System Acoustics

Calculate Resultant Sound Levels



Sound Control Devices

Pressurized enclosure

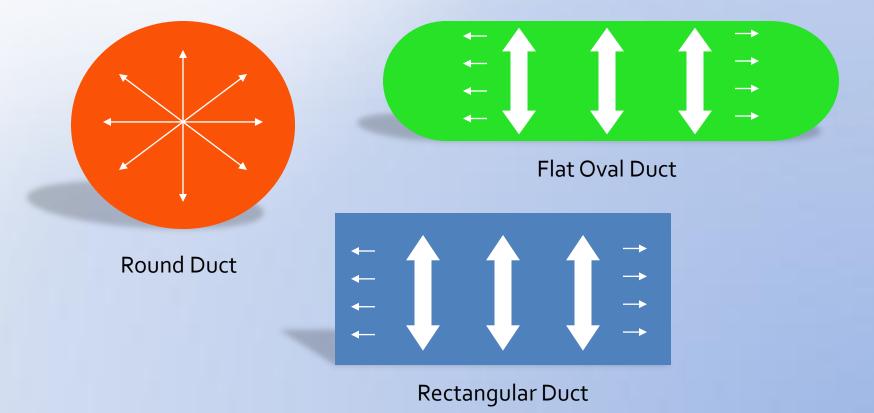
Round duct silencer

k-27 duct and fittings

Rectangular duct silencers

Why Leakage Control?

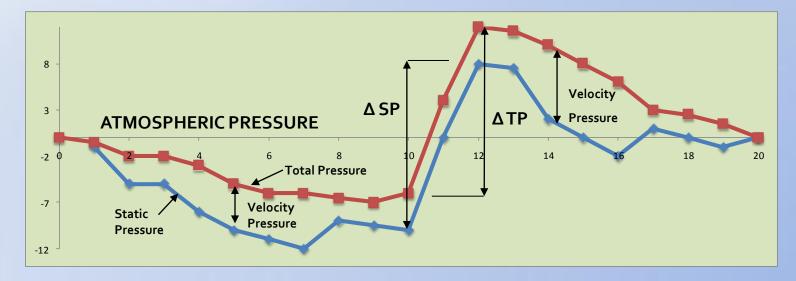
Good, Better, & Best Duct Design


Leakage Control

- Performance considerations
 - 1. Airflow quantities
 - 2. Airflow quality
 - 3. Airflow pressure
 - 4. Energy consumption
 - 5. Annual operational cost
 - 6. Balanced airflow

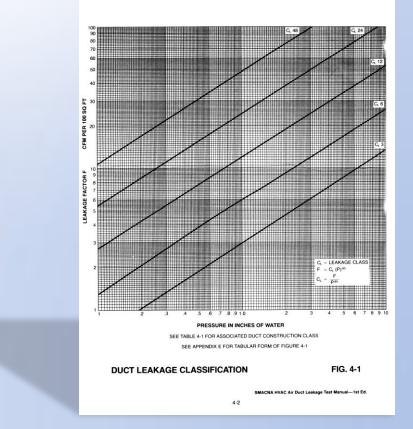
Fundamentals

Duct static pressure on various duct shapes



Fundamentals

Fan and duct pressure changes in duct



What does SMACNA say?

SMACNA

Leakage cfm/100 sq ft vs Test Pressure

McGill AirFlow LLC

SMACNA

Leakage Classes

		ABLE 4-1 LEAKAGE CLASS	ES
DUCT CLASS	1/2", 1", 2" W.G.	3" W.G.	4", 6", 10" W.G.
SEAL CLASS	с	В	A
SEALING APPLICABLE	TRANSVERSE JOINTS ONLY	TRANSVERSE JOINTS AND SEAMS	JOINTS, SEAMS AND ALL WALL PENETRATIONS
	LEA	KAGE CLASS	
RECTANGULAR	24	12	6
ROUND METAL 12		6	3

NOTES:

- Leakage classes in Table 4-1 apply when the designer does not designate other limits and has specified Seal Class C for 1/2" and 1" w.g. See text on sealing in the HVAC-DCS manual.
- Unsealed rectangular metal duct may follow Leakage Class 48.
- Fibrous glass duct may follow Leakage Class 6 (at 2" w.g. or less).
- Unsealed flexible duct leakage average is estimated to be Class 30. Sealed nonmetal flexible duct is an average of Class 12.
- See SMACNA HVAC Duct Systems Design manual Table 5-1 for longitudinal seam leakage rates.
- Although Seal Class A or B might be assigned for lower pressures, the leakage class may not conform to those associated with the higher pressure. Other construction details influence results.

- Leakage Class (C_i) is defined as being the leakage rate (CFM100 S.F.) divided by P^{iss} where P is the static pressure (IN. W.G.). When P is numerically equal to 1* the leakage rate is C_i. See Figure 4-1.
- 8. The duct pressure classification is not the fan static pressure nor the external static pressure (on an HVAC unity unless the system designer has made such an assignment in his contract documents. Unless construction class is otherwise specified it means a static pressure classification in the SMACNA HVAC-DCS. Those classifications pertain to maximum operating pressure in the duct as follows:
 - 0.5" w.g. maximum
 3.1" to 4" w.g. maximum

 0.6" to 2" w.g. maximum
 4.1" to 6" w.g. maximum

 1.1" to 2" w.g. maximum
 6.1" to 10" w.g. maximum

 2.1" to 3" w.g. maximum
 1" to 10" w.g. maximum

SMACNA HVAC Air Duct Leakage Test Manual—1st Ed.

4-3

Duct Geometry and Leakage Good, Better, & Best Duct Design

Duct Geometry and Leakage

Typical Duct Geometries

- 1. Round
- 2. Flat oval
- 3. Rectangular

SMACNA Leakage Class at Seal Class A

- 1. Round: 3 cfm/100 sq ft
- 2. Flat oval: 3 cfm/100 sq ft
- 3. Rectangular: 6 cfm/100 sq ft

WHAT IS WRONG WITH THIS PICTURE???

Duct Geometry and Leakage

Cost of Leakage

$$\frac{\text{Cost}}{\text{Year}} = \left(\frac{\text{Q}_{\text{fan}} \times \text{FTP}}{8,520 \times \text{eff}}\right) \times \frac{\text{Hours}}{\text{Year}} \times \frac{\$}{\text{kwh}}$$

WHERE:

Cost/Year = system first year operating cost (\$)

Q_{fan} = system volume flow rate (cfm)

FTP = system total operating pressure (in wg)

Hours/Year = number of hours the system operates in one year

\$/kwh = cost of energy

eff = fan/motor drive combined efficiency

8,520 = conversion factor to kwh (kilowatt hours)

McGill AirFlow LLC

Duct Geometry and Leakage

Impact of Leakage

Energy Cost Example									
Cost/year = [CFM x TP]/[8,520 x Eff] x Hours/Year x \$/kwh									
Leakage %	CFM (cu ft/min)	RPM (rev/min)	SP (in wg)	VP (in wg)	TP (in wg)	BHP (hp)	Oper/yr (\$/year)	Extra Oper/yr (\$/year)	Increased Oper/yr (%)
0	20,000	530	1.5	0.39	1.89	6.68	5,600	0	0
5	21,000	557	1.65	0.43	2.08	7.73	6,481	881	15.7
10	22,000	583	1.82	0.47	2.29	8.89	7,452	1,852	33.3
15	23,000	610	1.98	0.52	2.50	10.16	8,515	2,915	52.1
20	24,000	636	2.16	0.56	2.72	11.54	9,675	4,075	73
30	26,000	689	2.54	0.66	3.20	14.68	12,301	6,701	120
	electric rate \$0.15		0.15						
Accumed	52 wk x 6 d/wk x 24 hr		7,488 hr						
Assumed: fan/motor eff (%)		89							
initial velocity		2,501							

McGill AirFlow LLC

Duct Geometry and Leakage

Suggested Leakage Levels

Leakage Levels						
Test Pressure (in wg)	SMACNA Class 3 (cfm/100 sq ft)	Leakage (%)				
0-1	3.0	2				
1-2	4.6	2				
2-3	6.0	1				
3-4	7.4	1				
4-6	9.6	0.5				
6-10	13.5	0.5				

Duct Geometry and Leakage

Leakage Specification (minimum requirements)

1. Test pressure (in wg)

2. Allowable leakage (cfm/100 sq ft)

3. Test procedure

4. Report of findings

5. Certified test equipment

A. Duct types

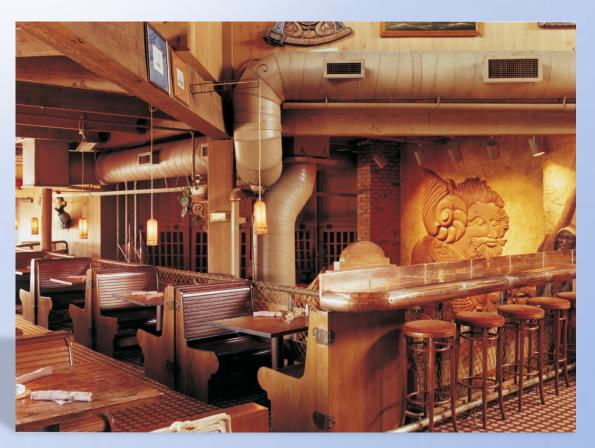
- 1. Round
- 2. Flat oval
- 3. Rectangular
- 4. Other: semi/quarter round, triangular

B. Elbow types

- 1. Pressed
- 2. Pleated
- 3. Gored

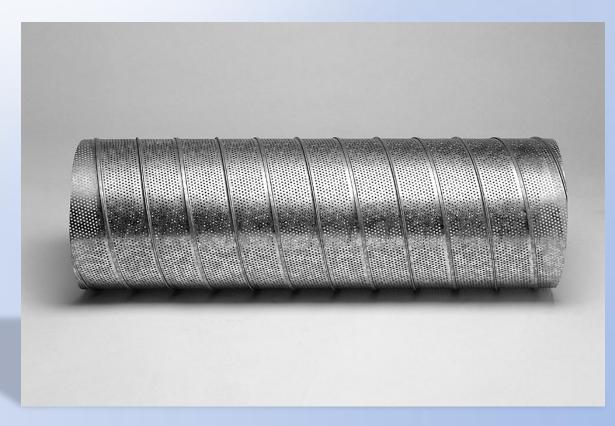
C. Divided flow fittings

- 1. Straight tee
- 2. Conical tee
- 3. LoLoss™ tee



Institutional

Commercial



Industrial



Controlled Air Distribution

High Bay and Boot Taps

Material Considerations

Material Considerations

Metallic

- 1. Galvanized steel, G6o/G9o/phosp.
- 2. Stainless steel, 304/316/finish #2d/#4
- 3. Aluminum, type 3003-H14
- 4. PVC-coated
- 5. SilverGuard[™] antimicrobial

Material Considerations

Non-metallic

- 1. FRP (fiberglass reinforced plastic)
- 2. Fibrous duct board
- 3. Flexible
- 4. Dry wall
- 5. Fabric, open or closed weave

Sealants and Adhesives

Sealants and Adhesives

Types

- 1. Water based
- 2. Solvent based

Common Properties

- 1. No surface preparation
- 2. +/- 40 in wg
- 3. High solids content
- 4. Curing time 24-48 hours

Sealants and Adhesives

LEED Applications

1. Solvent/water based

2. Low VOCs <250 g/l

Outside/Underground Applications

1. Solvent based

2. Resistant to weather and ultraviolet rays

Tapes

- 1. 2-part tape/sealant
- 2. +/- 40 in wg
- 3. Flexible
- 4. Butyl gasket for flange face

Diffusers, what type?

Diffusers, what type?

Exposed Features

Diffusers, what type?

Exposed Features

Specification Considerations

McGill AirFlow LLC

Specification Considerations

- 1. SMACNA duct construction standards 2005
- 2. Joint types
- 3. Hanging and support
- 4. Handling/shipping/cleaning
- 5. Finish welding/pacification/grinding
- 6. Double-wall and lining
- 7. Painting
- 8. Material types
- 9. Leakage testing

Conclusions

Conclusions

- 1. Fundamentals
- 2. Design methods
- 3. Energy consumption
- 4. Sound control
- 5. Leakage control
- 6. Exposed ductwork
- 7. Materials
- 8. Specifications