Good, Better, & Best Duct Design

An Overview for ASHRAE Bi State Chapter
March 14, 2012
Introduction

• Why Duct Design?
• How to Design?
• Design Process (8 steps)
• Fundamentals
• Design Methods
Introduction

- Ductwork Types
- Sound Control
- Leakage Control
- Exposed Ductwork
- Specifications
FUNDAMENTALS

Good, Better, & Best Duct Design
Flow Rate (Q)

\[Q = V \times A \]

WHERE:

- **Q** – volume flow rate of airflow (cfm)
- **V** – velocity (ft/min)
- **A** – area (sq ft)
Fundamentals

Total Pressure = Static Pressure + Velocity Pressure

TP = SP + VP

WHERE:

TP – in wg
SP – in wg
VP – in wg
Fundamentals

Duct static pressure on various duct shapes

Round Duct

Flat Oval Duct

Rectangular Duct
Fundamentals

Fan and duct pressure changes in duct

Entry → Airflow → Exit Diffuser

ATMOSPHERIC PRESSURE

Δ SP

Δ TP

Total Pressure

Static Pressure

Velocity Pressure

Good, Better, & Best Duct Design – An Overview
Fundamentals

Fan Laws

\[
\frac{Q_2}{Q_1} = \frac{RPM_2}{RPM_1}
\]

\[
\frac{BHP_2}{BHP_1} = \left(\frac{Q_2}{Q_1}\right)^3
\]

\[
\frac{FTP_2}{FTP_1} = \left(\frac{Q_2}{Q_1}\right)^2
\]

- **Q** = volume flow rate of airflow (cfm)
- **RPM** = fan speed (revolutions/minute)
- **BHP** = brake horse power (hp)
- **FTP** = fan total pressure (in wg)

Good, Better, & Best Duct Design – An Overview
Design Considerations

Good, Better, & Best Duct Design
Duct Types

Round — spiral and longitudinal seam duct

Flat Oval — spiral and longitudinal seam duct

Rectangular

Other — semi/quarter round, triangular

Good, Better, & Best Duct Design – An Overview
Design Considerations

Fitting Types

Elbows

- Pressed – 45° and 90°, 3- to 12-inch diameter
Design Considerations

Fitting Types

Elbows

- Pleated – 45° and 90°, 3- to 16-inch diameter
Design Considerations

Fitting Types

Elbows

- Gored – std
- Gored – long radius
Design Considerations

Fitting Types

Elbows

- Mitered – vanes
- Mitered – no vanes
Design Considerations

Ping-Pong Ball Fitting Loss
demonstration

click to play video

Good, Better, & Best Duct Design – An Overview
Design Considerations

Fitting Types

Divided Flow

- Straight Tee
Design Considerations

Fitting Types

Divided Flow
- Conical Tee

Good, Better, & Best Duct Design – An Overview
Design Considerations

Fitting Types

Divided Flow

- LoLoss™ Tee
Design Considerations

Fitting Types

Divided Flow

• Y-Branch

• Reducing Y-Branch
Design Considerations

Fitting Types

Divided Flow

• Bullhead Tee – vanes

• Bullhead Tee – no vanes

Good, Better, & Best Duct Design – An Overview
Design Considerations

Fitting Types

Divided Flow

• Laterals

Good, Better, & Best Duct Design – An Overview
Design Considerations

Fitting Types

Converging Flow

Good, Better, & Best Duct Design – An Overview
Supply Design Methods

1. Equal friction
2. Static regain
3. Velocity reduction
4. “T” method
Design Considerations

Exhaust/Return Design Methods

1. Exhaust
 a. Constant velocity
 b. Equal friction

2. Return
 a. Equal friction
 b. Velocity reduction
Energy Consumption

Good, Better, & Best Duct Design
Energy Consumption

• Factors
 1. cfm, sp, efficiency, fuel cost, and hours
 2. Operation cost vs aspect ratio

• System Annual Operating Cost
Performance Considerations

Good, Better, & Best Duct Design
Annual Operational Costs

\[
\frac{\text{Cost}}{\text{Year}} = \left(\frac{Q_{\text{fan}} \times \text{FTP}}{8,520 \times \text{eff}} \right) \times \frac{\text{Hours}}{\text{Year}} \times \frac{\$}{\text{kwh}}
\]

WHERE:

- **Cost/Year** = system first year operating cost ($)
- **Q_{\text{fan}}** = system volume flow rate (cfm)
- **FTP** = system total operating pressure (in wg)
- **Hours/Year** = number of hours the system operates in one year
- **$/\text{kwh}** = cost of energy
- **eff** = fan/motor drive combined efficiency
- **8,520** = conversion factor to kwh (kilowatt hours)
Sound Control

Good, Better, & Best Duct Design
Sound Control

Design Process

1. Determine acceptable noise criteria (NC) rating for the space
2. Determine the sound source spectrum
3. Calculate the resultant sound level criteria
4. Compare resultant sound levels
5. Select the appropriate noise control products to attain the needed NC level
Good, Better, & Best Duct Design – An Overview
Sound Control

Calculate Resultant Sound Levels

Good, Better, & Best Duct Design – An Overview
Sound Control Devices

Pressurized enclosure

Round duct silencer

k-27 duct and fittings

Rectangular duct silencers

Good, Better, & Best Duct Design – An Overview
Why Leakage Control?

Good, Better, & Best Duct Design
Leakage Control

Performance considerations

1. Airflow quantities
2. Airflow quality
3. Airflow pressure
4. Energy consumption
5. Annual operational cost
6. Balanced airflow
Fundamentals

Duct static pressure on various duct shapes

- Round Duct
- Flat Oval Duct
- Rectangular Duct
Fan and duct pressure changes in duct

Entry → Airflow → Exit Diffuser

- ATMOSPHERIC PRESSURE
- Δ SP
- Δ TP
- Static Pressure
- Velocity Pressure
- Total Pressure

Good, Better, & Best Duct Design – An Overview
What does SMACNA say?

Good, Better, & Best Duct Design
Leakage cfm/100 sq ft vs Test Pressure
Leakage Classes

TABLE 4-1

<table>
<thead>
<tr>
<th>DUCT CLASS</th>
<th>1/2", 1", 2" W.G.</th>
<th>3" W.G.</th>
<th>4", 6", 10" W.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAL CLASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEALING APPLICABLE</td>
<td>TRANSVERSE JOINTS ONLY</td>
<td>TRANSVERSE JOINTS AND SEAMS</td>
<td>JOINTS, SEAMS AND ALL WALL PENETRATIONS</td>
</tr>
<tr>
<td>RECTANGULAR METAL</td>
<td>24</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>ROUND METAL</td>
<td>12</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTES:
1. Leakage classes in Table 4-1 apply when the designer does not designate other limits and has specified Seal Class C for 1/2" and 1" w.g. See text on sealing in the HVAC-OCS manual.
2. Unsealed rectangular metal duct may follow Leakage Class 48.
3. Fibrous glass duct may follow Leakage Class 6 (at 2" w.g. or less).
4. Unsealed flexible duct leakage average is estimated to be Class 30. Sealed nonmetal flexible duct is an average of Class 12.
5. See SMACNA HVAC Duct Systems Design manual Table 5-1 for longitudinal seam leakage rates.
6. Although Seal Class A or B might be assigned for lower pressures, the leakage class may not conform to those associated with the higher pressure. Other construction details influence results.
7. Leakage Class \(C_L \) is defined as being the leakage rate (CFM/100 S.F.) divided by \(P^2 \) where \(P \) is the static pressure (IN. W.G.). When \(P \) is numerically equal to \(1" \) the leakage rate is \(C_L \). See Figure 4-1.
8. The duct pressure classification is not the fan static pressure nor the external static pressure (on an HVAC unit) unless the system designer has made such an assignment in his contract documents. Unless construction class is otherwise specified it means a static pressure classification in the SMACNA HVAC-OCS. Those classifications pertain to maximum operating pressure in the duct as follows:
 - 0.5" w.g. maximum: 3.1" to 4" w.g. maximum
 - 0.6" to 2" w.g. maximum: 4.1" to 6" w.g. maximum
 - 1.1" to 2" w.g. maximum: 6.1" to 10" w.g. maximum
 - 2.1" to 3" w.g. maximum

SMACNA HVAC Air Duct Leakage Test Manual—1st Ed.
Duct Geometry and Leakage

Good, Better, & Best Duct Design
Duct Geometry and Leakage

Typical Duct Geometries

1. Round
2. Flat oval
3. Rectangular

SMACNA Leakage Class at Seal Class A

1. Round: 3 cfm/100 sq ft
2. Flat oval: 3 cfm/100 sq ft
3. Rectangular: 6 cfm/100 sq ft

WHAT IS WRONG WITH THIS PICTURE???

Good, Better, & Best Duct Design – An Overview
Cost of Leakage

\[
\text{Cost/Year} = \left(\frac{Q_{\text{fan}} \times FTP}{8,520 \times \text{eff}} \right) \times \frac{\text{Hours}}{\text{Year}} \times \frac{\$}{\text{kwh}}
\]

WHERE:

- **Cost/Year** = system first year operating cost ($)
- **Q_{\text{fan}}** = system volume flow rate (cfm)
- **FTP** = system total operating pressure (in wg)
- **Hours/Year** = number of hours the system operates in one year
- **$/\text{kwh}** = cost of energy
- **eff** = fan/motor drive combined efficiency
- **8,520** = conversion factor to kwh (kilowatt hours)
Duct Geometry and Leakage

Impact of Leakage

<table>
<thead>
<tr>
<th>Leakage %</th>
<th>CFM (cu ft/min)</th>
<th>RPM (rev/min)</th>
<th>SP (in wg)</th>
<th>VP (in wg)</th>
<th>TP (in wg)</th>
<th>BHP (hp)</th>
<th>Oper/yr ($/year)</th>
<th>Extra Oper/yr ($/year)</th>
<th>Increased Oper/yr (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20,000</td>
<td>530</td>
<td>1.5</td>
<td>0.39</td>
<td>1.89</td>
<td>6.68</td>
<td>5,600</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>21,000</td>
<td>557</td>
<td>1.65</td>
<td>0.43</td>
<td>2.08</td>
<td>7.73</td>
<td>6,481</td>
<td>881</td>
<td>15.7</td>
</tr>
<tr>
<td>10</td>
<td>22,000</td>
<td>583</td>
<td>1.82</td>
<td>0.47</td>
<td>2.29</td>
<td>8.89</td>
<td>7,452</td>
<td>1,852</td>
<td>33.3</td>
</tr>
<tr>
<td>15</td>
<td>23,000</td>
<td>610</td>
<td>1.98</td>
<td>0.52</td>
<td>2.50</td>
<td>10.16</td>
<td>8,515</td>
<td>2,915</td>
<td>52.1</td>
</tr>
<tr>
<td>20</td>
<td>24,000</td>
<td>636</td>
<td>2.16</td>
<td>0.56</td>
<td>2.72</td>
<td>11.54</td>
<td>9,675</td>
<td>4,075</td>
<td>73</td>
</tr>
<tr>
<td>30</td>
<td>26,000</td>
<td>689</td>
<td>2.54</td>
<td>0.66</td>
<td>3.20</td>
<td>14.68</td>
<td>12,301</td>
<td>6,701</td>
<td>120</td>
</tr>
</tbody>
</table>

Assumed:
- Electric rate $0.15
- 52 wk x 6 d/wk x 24 hr
- Fan/motor eff (%)
- Initial velocity

Good, Better, & Best Duct Design – An Overview
Duct Geometry and Leakage

Suggested Leakage Levels

<table>
<thead>
<tr>
<th>Test Pressure (in wg)</th>
<th>SMACNA Class 3 (cfm/100 sq ft)</th>
<th>Leakage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>3.0</td>
<td>2</td>
</tr>
<tr>
<td>1-2</td>
<td>4.6</td>
<td>2</td>
</tr>
<tr>
<td>2-3</td>
<td>6.0</td>
<td>1</td>
</tr>
<tr>
<td>3-4</td>
<td>7.4</td>
<td>1</td>
</tr>
<tr>
<td>4-6</td>
<td>9.6</td>
<td>0.5</td>
</tr>
<tr>
<td>6-10</td>
<td>13.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Good, Better, & Best Duct Design – An Overview
Duct Geometry and Leakage

Leakage Specification (minimum requirements)

1. Test pressure (in wg)
2. Allowable leakage (cfm/100 sq ft)
3. Test procedure
4. Report of findings
5. Certified test equipment
Exposed Ductwork

Good, Better, & Best Duct Design
Exposed Ductwork

A. Duct types
 1. Round
 2. Flat oval
 3. Rectangular
 4. Other: semi/quarter round, triangular

B. Elbow types
 1. Pressed
 2. Pleated
 3. Gored

C. Divided flow fittings
 1. Straight tee
 2. Conical tee
 3. LoLoss™ tee

Good, Better, & Best Duct Design – An Overview
Exposed Ductwork

Institutional

Good, Better, & Best Duct Design – An Overview
Exposed Ductwork

Commercial

Good, Better, & Best Duct Design – An Overview
Exposed Ductwork

Industrial

Good, Better, & Best Duct Design – An Overview
Exposed Ductwork

Controlled Air Distribution
Exposed Ductwork

High Bay and Boot Taps

McGill AirFlow LLC

Good, Better, & Best Duct Design – An Overview
Material Considerations

Good, Better, & Best Duct Design
Material Considerations

Metallic

1. Galvanized steel, G60/G90/phosp.
2. Stainless steel, 304/316/finish #2d/#4
3. Aluminum, type 3003-H14
4. PVC-coated
5. SilverGuard™ antimicrobial
Material Considerations

Non-metallic

1. FRP (fiberglass reinforced plastic)
2. Fibrous duct board
3. Flexible
4. Dry wall
5. Fabric, open or closed weave
Sealants and Adhesives
Good, Better, & Best Duct Design
Sealants and Adhesives

Types

1. Water based
2. Solvent based

Common Properties

1. No surface preparation
2. +/- 40 in wg
3. High solids content
4. Curing time 24-48 hours
Sealants and Adhesives

LEED Applications
1. Solvent/water based
2. Low VOCs <250 g/l

Outside/Underground Applications
1. Solvent based
2. Resistant to weather and ultraviolet rays

Tapes
1. 2-part tape/sealant
2. +/- 40 in wg
3. Flexible
4. Butyl gasket for flange face

Good, Better, & Best Duct Design – An Overview
Diffusers, what type?

Good, Better, & Best Duct Design
Diffusers, what type?

Exposed Features

Good, Better, & Best Duct Design – An Overview
Diffusers, what type?

Exposed Features

Good, Better, & Best Duct Design – An Overview
Specification Considerations

Good, Better, & Best Duct Design
Specification Considerations

1. SMACNA duct construction standards 2005
2. Joint types
3. Hanging and support
4. Handling/shipping/cleaning
5. Finish welding/pacification/grinding
6. Double-wall and lining
7. Painting
8. Material types
9. Leakage testing
Conclusions

Good, Better, & Best Duct Design
Conclusions

1. Fundamentals
2. Design methods
3. Energy consumption
4. Sound control
5. Leakage control
6. Exposed ductwork
7. Materials
8. Specifications