Absorption vs. Electric Chiller Technologies

Evans J. Lizardos, P.E. President LEED Accredited Professional Lizardos Engineering Associates, P.C.

EVALUATION CRITERIA

Detailed Evaluation

VS.

Simplified Evaluation of Operating Costs

Simplified Approach Applies to the equipment only

Assuming that the auxiliary support equipment is not a major factor

Absorption vs. Electric Chillers

Chilled Water Pumps = **0**

Condenser Water Pumps Cooling Power Fans Absorption Machine Auxiliaries

More horsepower required for absorption – but not a significant impact to the evaluation **The Simplified Evaluation** is most effective for chilled water systems when comparing heat vs. electric cooling technology

Simplified Version is usually not used for following technologies:

Rooftop

•PTAC (Hot Water Heating Coil)

•PTAC (Heat Pump)

•PTAC (Geothermal)

EQUIPMENT SIZE

Determine the tonnage and select the types of electric or absorption chillers to be used in the comparison

THREE STEP APPROACH TO SIMPLIFIED EVALUATION

OCF – Operating Cost Factor X EF – Efficiency Factor X EC – Energy Cost =

AOEC – Annual Operating Energy Cost

OPERATING COST FACTOR (OCF)

Total Full Load Annual Operating Hours

(usually 800 to 1,000 hours)

X

Equipment Size (tonnage)

EFFICIENCY FACTOR (EF)

Based on coefficient of performance (COP) from ASHRAE Standard 90.1 (energy code)

> COP = Output Input

Energy standard for buildings except low-rise residential buildings (Table 6.2.1C)

Water chilling Minimum efficience	Conversion calculation to determine the efficiency factor (EF)				
Equipment type	Size category	Minimum efficiency	COP = Output/Input		Efficiency Factor (EF)
Air cooled without condenser, electrically operated	<150 tons ≥150 tons	2.8 COP	2.8 = 12,000 Btu/4,286 Btu 3.51 kW/1.25 kW		1.25 kW/ton
Air cooled without condenser, electrically operated	All capacities	3.10 COP	3.10 = 12,000 Btu/3,871 Btu 3.51 kW/1.13 kW		1.13 kW/ton
Water cooled, electrically operated, positive displacement (reciprocating)	All capacities	4.20 COP	4.2 = 12,000 Btu/2,857 3.51 kW/0.84 kW		0.84 kW/ton
Water cooled, electrically operated, positive displacement, rotary screw and scroll	<150 tons	4.45 COP	4.45 = 12,000 Btu/2,696 kW/0.79 kW		0.79 kW/ton
	150 tons and <300 tons	4.90 COP	4.9 = 12,000 Btu/2,449 Btu 3.51 kW/0.72 kW		0.72 kW/ton
	≤300 tons	5.50 COP	5.5 = 12,000 Btu/2,182 Btu 3.51 kW/0.64 kW		0.64 kW/ton
Water cooled, electrically operated centrifugal	<150 tons	5.00 COP	5.00 = 12,000 Btu/2,400 Btu 3.51 kW/0.70 kW		0.70 kW/ton
	≥150 tons and ≥300 tons	5.55 COP	5.55 = 12,000 Btu/2,162 Btu 3.51 kW/0.63 kW		0.63 kW/ton
	≥300 tons	6.10 COP	6.10 = 12,000 Btu/1,967 Btu 3.51 kW/0.58 kW		0.58 kW/ton
Air cooled, absorption single effect	All capacities	0.60 COP	.6 = 12,000 Btu/ 20,000 Btu	20,000 Btu/ 949 Btu/lb*	21 lb stm/ton
Water-cooled, absorption single effect	All capacities	0.7 COP	.7 = 12,000 Btu/ 17.143 Btu	17,143 Btu/ 950.02 Btu/lb*	18 lb stm/ton
Absorption, double effect indirect-fired	All capacities	1.00 COP	1.00 = 12,000 Btu/ 12,000 Btu	12,000 Btu/ 880 Btu/lb**	13.7 lb stm/ton
Abso <mark>rption</mark> , double effect direct-fired	All capacities	1.00 COP	12,000 Btu/100,000 Btu/therm		.12 therms/ton

The enthalpy value for 12 psig steam is 949 Btu/lb The enthalpy value for 100 psig steam is 880 Btu/lb *

**

Energy Standard for Buildings Except Low-Rise Residential Buildings (Table 6.2.1C)								
Water Chilling Packages Minimum efficiency requirements			Conversion calculation to determine the efficiency factor (EF)					
Equipment type	Size category	Minimum efficiency	COP = Output/Input or Input = Output/COP	Efficiency Factor (EF)				
Water cooled, electrically operated centrifugal	<u>></u> 300 tons	6.10 COP	Input = 12000 BTU/6.1 1967 BTU = 12000BTU/6.1 <u>12000 BTU</u> 3415 BTU/KW = 3.51 KW .58 KW = 3.51 KW/6.1	.58 KW/Ton				
Absorption, double effect indirect-fired	All capacities	1.00 COP	12000 BTU/100000 BTU/Therm	.12 Therms/Ton				

ANNUAL OPERATING ENERGY COSTS Therm **100,000 BTU** 29.28 3,415 BTU KW **KILOWATT CHARGE MUST BE MULTIPLIED BY 29.28 IN ORDER TO COMPARE IT TO THE** THERM COST **29.28 KW** \$0.12 \$3.51 X Therm KW Therm

GAS VS. ELECTRIC UTILITY RATE COMPARISON RATE SCHEDULE

Electric	x 29	29.28		Gas
		<u>\$</u> Thorm		
	\$0.03	\$0.88		
	\$0.04	\$1.17		
	\$0.05	\$1.46		
	\$0.06	\$1.76		
	\$0.07	\$2.05		
	\$0.10	\$2.93		
	\$0.12	\$3.51		
	\$0.14	\$4.10		
	\$0.16	\$4.68		

ENERGY COSTS (EC)

GAS - \$/Therm Electric - \$/KWH Steam - \$/1,000 Ib of Steam (high temperature hot water)

DETERMINATION OF "EC" FOR GAS AND ELECTRIC

Total Monthly Utility Bill (\$) Total Therms or KWH's

Therm or KWH

DETERMINATION OF "EC" FOR STEAM

As of October 29, 2007

\$10.00

1000 lbs. Steam

AOEC FOR ELECTRIC CENTRIFUGAL

For this example only:

Choose an electric centrifugal chiller •Lower First Cost •Lower Operating Cost Lower Maintenance Cost Smaller Footprint Excellent Part Load Performance

Licensed boiler operators

For this example only:

Reasons not to choose an electric centrifugal chiller: Electric service a problem Electric service costs Summer Steam plant operation Prefer absorption machines Steam turbine driven centrifugal Screw versus centrifugal Licensed refrigeration operators